ITk Layout Simulation

Simon Viel

(Lawrence Berkeley National Laboratory)

July 7th, 2015

Introduction

- Currently a lot of ongoing activity on the ITk layout simulation front
 - Still at the exploration stage, convergence process expected to start this autumn
- Outline:
 - Letter of Intent layouts (Lol and Lol-VF)
 - Phase-II upgrade scoping exercise
 - Number of pixel barrel layers, and boundary between pixel and strip detectors
 - Specific design ideas
 - Inclined modules concept
 - Strip stereo angle studies
 - Pixel endcap rings
 - Extended tracking η coverage
 - Large-η Task Force results
 - Extended inner pixel barrel layers

Letter of Intent layouts

- The ATLAS Phase-II Letter of Intent (LoI) defined an ITk layout in 2012
 - Not a candidate for construction
 - Still used in full simulation for many Phase-II upgrade studies
- A very-forward layout was created, simply by extending the pixel disks
 - Unrealistic, no room for pixel services
 - Study impact on physics results of extending the tracking coverage up to $|\eta| = 4$

Scoping exercise

- Upcoming decision about the Phase-II upgrade budget
 - Balance physics performance against price
 - 200, 235 or 275 MCHF, and ITk is about 50% of the cost
 - Actually a de-scoping exercise, as the Lol layout is a 275 MCHF scenario
 - But we can do better by re-designing for a given budget
 - Foreseen MCHF \rightarrow | η | coverage: 200 \rightarrow 2.7, 235 \rightarrow 3.2, 275 \rightarrow 4.0

Full simulation results expected soon

Scoping exercise

- Upcoming decision about the Phase-II upgrade budget
 - Balance physics performance against price
 - 200, 235 or 275 MCHF, and ITk is about 50% of the cost
 - Actually a de-scoping exercise, as the Lol layout is a 275 MCHF scenario
 - But we can do better by re-designing for a given budget
 - Foreseen MCHF \rightarrow | η | coverage: 200 \rightarrow 2.7, 235 \rightarrow 3.2, 275 \rightarrow 4.0

Here green strips means single-sided (not stereo)

Full simulation results expected soon

Number of pixel barrel layers and boundary between pixel and strip detectors

Number of pixel barrel layers

- Idea to increase the number of pixel barrel layers to 5 or 6
 - Studies with 4 double-sided strip barrel layers (no more stub), and shortened disks
 - This number can impact the whole ITk layout design
- Two fully-simulated layouts with 5 pixel barrel layers:

Barrel layer "doublets"

R = 39, 65, 160, 200, 300 mm

Barrel layers "equidistant"

R = 39, 75, 140, 220, 300 mm

Number of pixel barrel layers

- Findings from first studies using single-particle samples at <µ> = 200:
 - Varying the hit requirement from 9 to 11 has little impact on fake rates
 - Primary track reconstruction efficiency improves with **more layers**, for same hit requirement
 - Pileup only increases the fake rate, no impact on the primary track efficiency
 - Doublets vs. equidistance: no difference in primary track efficiency, fake rate conclusion depends on signal process (?)

Number of pixel barrel layers

- Findings from first studies using single-particle samples at <µ> = 200:
 - Tracking resolution: Very little difference between layouts, and pileup conditions

Pixel volume discussion

- Proposal to increase the pixel detector radius to R ~ 395 mm
 - Would make room for an eventual 6th pixel barrel layer
 - Preliminary studies indicate no loss of coverage in forward region
- Arguments to keep the current baseline (boundary at R = 345 mm):
 - Cost increase from both the strip barrel and pixel endcap > savings from strip endcap
 - Might otherwise need to revisit the strip endcap petal design

Latest course of action:

- Strips: Re-evaluate minimal clearance under current endcap petal design
- Pixels: Evaluate minimal additional radius needed for a 6th barrel layer

(62 mm if removing R2, more otherwise)

Specific design ideas

Inclined modules: Alpine layout

- Proposal to reduce the silicon area
- Using inclined modules on barrel staves
- Currently implemented in fast simulation
 - Development of a tool to facilitate the transition to full simulation

Inclined modules: SLIM layout

- More recent support structure proposal for inclined modules
- Also now implemented in fast simulation

z_o displacement up to 150 mm

z [mm]

Strip stereo angle

- Nominal strip stereo design has alternating double-layers: 0 / 40, -40 / 0 mrad
- Investigation of the θ resolution using +20 / -20 mrad design
 - Arguably easier and cheaper to build
- First results: slightly better performance at high momentum with 0 / 40, -40 / 0
 - To be studied further

Pixel endcap rings

- Realistic pixel endcap design with room for supports and services
- Quad module ring positions are individually adjustable

- with coverage up to $|\eta| = 2.7$
- Hermetic when optimized
- Extendable to high n

Extended tracking η coverage

Extended tracking η coverage

- Main benefits as demonstrated in the Large-η Task Force report:
 - Improved vertexing, **pileup jet suppression** by 95% with hard scatter jet eff. 80-85%
 - Results in improved **MET resolution** by about 30%
 - Forward **b-tagging**: 70% efficiency maintained, at expense of 5x mis-tag rate
 - Forward electron identification: fake rejection improves by factor 1.5
 - **Muon** acceptance increased by 30%, if combining extended ITk with muon tagger
 - Improved sensitivity and/or acceptance in VBS and VBF H studies, bbH, H \rightarrow 4 ℓ , etc.

Extended inner pixel barrel

- In addition to extending the pixel endcap, extending the inner pixel barrel
 to |η| = 4 is expected to bring significant gains in tracking performance
- Comparing layouts with a realistic pixel endcap, with and without barrel extension:
 - Reconstruction efficiency improved by 20% (absolute gain)
 - Track parameter resolutions improved by up to an order of magnitude
 - Potential to reduce fake rates using cluster length in the forward region

Extended inner pixel barrel

- In addition to extending the pixel endcap, extending the inner pixel barrel
 to |η| = 4 is expected to bring significant gains in tracking performance
- Comparing layouts with a realistic pixel endcap, with and without barrel extension:
 - Reconstruction efficiency improved by 20% (absolute gain)
 - Track parameter resolutions improved by up to an order of magnitude
 - Potential to reduce fake rates using cluster length in the forward region

Fluence and dose studies

- Standalone FLUKA model of ITk used to study radiation backgrounds
- Compared fluences and doses for a variety of scenarios
 - In particular, radius of inner pixel barrel services
 - Conclusion: Need to route these services no lower than R = 140 mm

Very forward layout: Full simulation

- Solution to keep coverage to $|\eta| = 4$: Innermost pixel endcap rings inside the IST
 - Replaceable along with inner barrel layers; allows to route inner barrel services above

Critical effort from Swagato Banerjee

Best resolution so far from a realistic layout → now verified with pileup! <µ> = 200

Numbers are for $p_T \sim 5$ GeV, 3.2 < $|\eta| < 4.0$

Very forward layout: Latest design

- Innermost pixel barrel layer extends to ± 1.22 m → |η| < 4.0 (15 cm beam spot)
- Strip layout optimized with 14 barrel modules and 6 disks
- Pixel endcap ring positions optimized
 - Pixel radius at 345 mm shown here; can be increased if needed using more modules

Conclusion

- The ITk layout is an optimization problem with a lot of degrees of freedom
 - We will have to fix some of them first to make progress
 - Phase-II upgrade budget \rightarrow ITk share of it \rightarrow $|\eta|$ coverage
 - Pixel-strip boundary → Strip layout → Pixel layout
 - Reached consensus on some general concepts
 - Pixel: 5 to 6 barrel layers, 3 to 5 endcap ring layers
 - Strips: 4 double-sided barrel layers (no stub), 6 endcap disks
- The requirements document might help to converge, draft here
- Many important details need confirmation: mechanics, service routing, etc.
- Overall, very good expected performance
 - Including for the extension to $|\eta| = 4$
 - Many details yet to verify in samples with pileup at <µ> = 200, now available!

BONUS SLIDES

Long pixel clusters in data

Long pixel clusters observed in data from IBL module test beam at SLAC ESA

IBL planar module, Threshold 1000e, beam in short pixel orientation

size = 93, no hole

Long pixel clusters in data

- Long pixel clusters observed in data from IBL module test beam at SLAC ESA
- Cluster length → precise measurement of the incidence angle
 - In tracking context: measurement of θ → z₀ given R
- Will also study CERN test beam data, and IBL data

